Baby Trachs: Use of the Passy-Muir® Valve in the NICU to Optimize Swallowing and Feeding

What are the Challenges?

- Limited information, much of it anecdotal, yet compelling
- Implications of tracheostomy for neonates not always well understood by NICU staff
- Benefits of Passy-Muir® Valve for the preterm and sick newborn may not be considered by NICU staff due to lack of information

Spreading the Word in NICU

- Partner with RT
- SLP and RT complete Passy-Muir® Valve competency
- Information and Education for the team:
 - Normal infant swallowing physiology
 - Alterations in anatomy and physiology due to trach
 - www.passy-muir.com -> click “Videos”
 - Benefits of Passy-Muir Valve
 - What to expect once we start
- Start slowly, facilitate learning from each baby, share the successes

Indications for Tracheostomy in the NICU

- Requires prolonged ventilatory support
 - Neuromuscular
 - Vent dependency
- Chronic obstruction within the airway:
 - Choanal Atresia
 - Subglottic stenosis
 - Tracheomalacia, laryngomalacia, bronchomalacia
 - Vocal cord paralysis
- Chronic aspiration
- Pulmonary toileting due to inability to clear secretions

Diagnoses Associated with Tracheostomy in the NICU

- Severe CNS problems
 - Arnold Chiari, Werdnig - Hoffman, Congenital Hypoventilation Syndrome
- Craniofacial problems:
 - Pierre Robin Sequence, Treacher Collins, Beckwith - Wiedemann, CHARGE Syndrome
- Chronic Lung Disease, BPD

Need for NICU Care: Impact

- Clinically,
 - Adverse consequences of NICU environment
 - Prolonged NPO
 - Prolonged and/or emergent intubation
 - Extended mechanical ventilation
 - Respiratory co-morbidities with preterm
 - EER (extra esophageal reflux) common
 - Altered oral-pharyngeal sensory process experiences
 - Swallowing problems unrelated to trach
Implications of Trach in NICU for Swallowing

- Loss of (or inability to experience) the senses of taste and smell
- Reduced or latent airway closure
- Altered subglottic pressure
- Decreased laryngeal and pharyngeal sensation
- Increased secretions: “wet trach” with mild intermittent accumulation of clear tracheal secretions to be expected
- Altered awareness/management of secretions
- Altered cough

Observed Benefits of the Passy-Muir® Valve in the NICU Population

- Infant able to communicate via cry/sounds
- Infant able to taste and smell
- Infant able to generate subglottic pressure for cough, cry, swallowing, phonation
- Reduces potential for further vocal cord dysfunction by restoring airflow over vocal cords
- Restores laryngeal/pharyngeal sensation by restoring airflow through upper airway

Passy-Muir® Valve Initial Assessment: Standard Operating Procedure

- Contraindications
 - Medical instability
 - Cannot tolerate cuff deflation
 - Inability to manage secretions
 - Airway obstruction
 - Respiratory impairment that renders lung elasticity poor and may result in air trapping
 - Unable to maintain quiet alert state

Implications of Trach in NICU for Swallowing: Research

- No Randomized Controlled Trials/research on neonates
- Available research only with older infants and toddlers
 - Swallowing disorders in 91% (33/36) of infants with trachs (Roushgh & Pek, 1999)
 - In toddlers: Delay in swallow initiation and penetration, delayed closure of laryngeal vestibule (Abraham & Wolf, 2000)
 - 75% (60/80) infants and toddlers (0-3 years) with dysphagia: 81% oral phase, 60. 9% pharyngeal phase, 79.7% esophageal (Norman et al, 2007)
 - Decreased secretion control (Abraham, 2009)

Observed Benefits of the Passy-Muir® Valve in the NICU Population

- Improved secretion management: observed
 - Similar to Abraham (2009) 24/49 children wearing Passy-Muir Valve during waking hours normalized secretion management within 2 weeks due to improved sensation of secretions
- Reducing time to decannulation: observed
 - Restoration of physiologic PEEP
 - More normal breathing pattern with less excessive WOB and more use of expiratory muscles

Passy-Muir® Valve Initial Assessment: Standard Operating Procedure

- Procedure for Placement
 - Verification of trach size, type, etc.
 - Monitor vital signs, including O₂ saturations, throughout assessment
 - Suctioning will be performed by trained personnel
 - Cuff deflation if cuffed trach
 - Suction
 - Assess airway patency
 - Assess tolerance of procedure
 - Attach the Passy-Muir Valve using a ½ turn to right
Baby Trachs: Use of the Passy-Muir® Valve in the NICU to Optimize Swallowing and Feeding

Ventilator Application of Passy Muir® Valve

- Before Placing Valve in-line with ventilator
 - Discussion with Respiratory Therapist regarding any changes that need to be made to the ventilator (each ventilator requires different changes)
- Placement of Passy Muir Valve in-line
 - We utilize the Passy Muir Valve 007 (Aqua)
 - Attach the Passy Muir Valve to adapter to appropriately fit the tubing
 - Place the Passy Muir Valve as close to the trach hub as possible

VFSS: Neonatal Swallowing Physiology

Remember: need to be aware of unique components of neonatal swallowing physiology

- **Larynx already elevated** and forward at rest due to postural and structural differences
- **No epiglottic displacement**
- **Strong posterior propulsion of tongue** provides anterior hyoid motion to impact UES
- **Swallow is highly pressure driven**: valves apply pressure to direct food through oral-pharyngeal cavities
VFSS: Neonatal Swallowing Physiology

- **Driving force on bolus** comes from tongue generating strong posterior propulsion
- **Pressures and their interaction critical to avoid bolus misdirection**: inability to build up adequate pressure to propel the bolus due to an open trach can distort the interrelationship of pressures
- **Cough** not reliable in the *typical newborn*: sensors not developed

VFSS: Impact of Passy-Muir® Valve in NICU

- Co-morbidities unrelated to trach must be considered
- No published research with NICU infants
- Observational data
- Hypothesis:
 - improved sensation
 - normalized pressure changes within the aerodigestive system (restored subglottic positive pressure + negative esophageal pressure)
 - vocal cord closure = more driving force on bolus
 - expiratory flow s/p swallow sweeps the pharynx

VFSS with Baby with Passy-Muir® Valve

VFSS with Baby without Passy-Muir® Valve

Selected References

- Abraham SS. Babies with tracheostomies. The ASHA Leader (2003) ASHA

Questions???
Selected References

Selected References